skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Neugebauer, Florian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract- Neural networks (NNs) are increasingly often employed in safety critical systems. It is therefore necessary to ensure that these NNs are robust against malicious interference in the form of adversarial attacks, which cause an NN to misclassify inputs. Many proposed defenses against such attacks incorporate randomness in order to make it harder for an attacker to find small input modifications that result in misclassification. Stochastic computing (SC) is a type of approximate computing based on pseudo-random bit-streams that has been successfully used to implement convolutional neural networks (CNNs). Some results have previously suggested that such stochastic CNNs (SCNNs) are partially robust against adversarial attacks. In this work, we will demonstrate that SCNNs do indeed possess inherent protection against some powerful adversarial attacks. Our results show that the white-box C&W attack is up to 16x less successful compared to an equivalent binary NN, and Boundary Attack even fails to generate adversarial inputs in many cases. 
    more » « less